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The non-linear vibrations of a structure coupled with water sloshing in a rectangular tank
are theoretically and experimentally studied. The water tank is attached to a structure to
suppress the horizontal vibrations of the structure caused by a sinusoidal excitation. In the
theoretical analysis, considering the only source of non-linearity of the liquid inertia to be
due to a large sloshing amplitude, the modal equations for sloshing are presented. Secondly,
the solutions for the harmonic oscillations of the structure and the water surface are
determined, including their stability analyses. Then, the resonance curves for this system
are shown. As a result, the resonance curves are found to change from the soft spring type
to the hard spring type as the water depth decreases. The resonance curves also show that
a super-summed-and-differential harmonic oscillation can occur at the tuning frequency
when the magnitude of excitation is comparatively large. This is a kind of non-linear forced
oscillation due to the non-linearity of the fluid force. The appearance of this oscillation
reduces the efficacy of vibration suppression by using the water tank. In conclusion, it was
ascertained that these results agreed qualitatively well with the experimental results.
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1. INTRODUCTION

Vibrations of a structure, coupled with the sloshing of the liquid surface, are seen in
systems such as elevated water tanks, or storage tanks for LNG (Liquefied Natural Gas).
Therefore, this kind of vibration is an important problem in industry. A device for the
suppression of this vibration, called a TSD (i.e., Tuned Sloshing Damper), has been
developed in order to control the vibration of a tower-like structure with a long
period [1–3]. The effects of this device have already been verified experimentally, and
the device has been applied to some practical structures [4–7]. The TSD is a kind of
control device for vibration, having a function similar to that of a dynamic absorber,
in which the fundamental natural frequency of sloshing in a liquid tank is tuned to
the natural frequency of a structure in order to utilize the liquid force acting on the tank
walls. Until now, the TSD has been studied experimentally. In order to investigate the
behaviour of this kind of system precisely, one should consider the non-linearity of the
fluid force, especially at resonance, when the magnitude of the fluid surface becomes
marked.

Up to now, many papers have reported on the sloshing phenomena in a rigid rectangular
tank. As for the non-linear response of the sloshing in a rectangular tank subjected
horizontally to a sinusoidal excitation, there are analyses by means of the perturbation
method, by Faltinsen [8] and Hayama et al. [9], research on the fluctuation of the hydraulic
pressure, by Kimura et al. [10], and theoretical and experimental research by means of the
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shallow water wave theory, by Shimizu and Hayama [11], Lepelletier and Raichlen [12]
and Ishibashi and Hayama [13]. Most of this research, such as that of Senda and
Nakagawa [14] and Housner [15], which is concerned with the vibrations of structures with
a TSD of the rectangular tank type, subjected to a sinusoidal excitation, deal with a linear
system. There seem to be only a few reports on the coupled vibration of a structure and
sloshing, in which the non-linearity of the fluid force due to sloshing is considered. For
example, Fujino et al. [16], Ishikawa and Kaneko [17] and Kaneko [18] have presented
resonance curves obtained by simulation via the method of finite differences, and discussed
these in comparison with experimental results. The resonance curves have not been
obtained theoretically, however, although, Ibrahim and Barr [19], Peterson [20] and Welt
and Modi [21] have theoretically and experimentally investigated the non-linear vibrations
of a structure with a TSD of cylindrical tank type, as have Sayar and Baumgarten [22]
for one of spherical tank type.

This paper presents theoretical and experimental resonance curves for the horizontal
motion of a structure to which a rectangular tank partially filled with water is attached,
and which is subjected to a sinusoidal excitation. Here, the only source of non-linearity
of the liquid inertia considered is that due to a large sloshing amplitude. In the theoretical
analysis, the modal equations of motion are derived that govern the non-linear coupled
vibration of the structure with the sloshing phenomenon. Then, the steady state solution
for the harmonic oscillation is determined, its stability analysis is performed, and resonance
curves are shown for various depths of water. From the numerical simulation, it is also
found that there can occur a super-summed-and-differential harmonic oscillation near the
tuning frequency when the excitation is comparatively large. This kind of non-linear forced
oscillation becomes a serious obstacle for the vibration control of the structure in practical
engineering systems. In experiments, quantitatively good agreement was obtained between
the theoretical characteristics and the experimental results.

2. THEORETICAL ANALYSIS

2.1.   

The theoretical model is shown in Figure 1. A structure consisting of a cantilever beam
and a mass m is horizontally subjected to a sinusoidal excitation. The rigid and rectangular
tank, with a width d and a length l, partially filled with liquid to a depth h, is attached
to the mass m. The moving co-ordinate system is considered, Oxy, which is fixed on the
tank, and the x-axis of which coincides with the undisturbed water surface. The motion
of the water is assumed to be possible in a two-dimensional plane; that is, in the x-y plane.
The displacements of the structure and the water surface at the position x are x1 and h,
respectively. The equations of motion for the liquid motion have been derived in references

Figure 1. A model for theoretical analysis.
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[19, 23]. The velocity potential for the relative motion of the liquid to the tank is f.
According to the references, the Laplace equation (or the continuity equation) is

92f(x, y, t)0 12f/1x2 + 12f/1y2 =0, (1)

and the Euler energy equation (or the pressure equation) is

1f

1t
+ 1

2 601f

1x1
2

+01f

1y1
2

7+ gy+
P
r

− 1
2ẋ

2
1 + mf=−ẍ1x, (2)

where P(x, y, t) is the fluid pressure, m is the viscosity, r is the density, and g is the
acceleration due to gravity. Also, t is the time, and a superscript dot denotes differentiation
with respect to time. In equation (2) the small viscosity term mf takes account of all kinds
of damping effects of the fluid; the fluid is assumed to obey a potential flow with a sufficient
accuracy.

Here, we consider that the structure with a spring constant k and a damping coefficient
c is subjected to the harmonic excitation F0 cos vt. The equation of motion for the
structure is

mẍ1 + cẋ1 + kx1 =Fl +F0 cos vt. (3)

According to reference [19], the longitudinal deflection of the cantilever beam yields
non-linear terms in equation (3). However, as shown in Appendix A, these terms can be
neglected, because they are negligibly small. In equation (3), Fl denotes the horizontal fluid
force, which is applied on the side walls of the tank in the direction of x1. Fl is given by

Fl = d g
h1

−h

P(l/2, y, t) dy− d g
h2

−h

P(−l/2, y, t) dy, (4)

where h1 and h2 represent the surface elevations at the side walls; that is, at x= l/2 and
x=−l/2, respectively. As shown in section 2.2, it will be seen that integrating equation
(4) yields non-linear terms.

The following dimensionless quantities are introduced:

x'1 = x1/l, h'= h/l, x'= x/l, y'= y/l, d'= rdl2/M, h'= h/l,

f'=f/(l2p1), n=m/M, k'= k/(Mp2
1 ), c'= c/(Mp1), m'= m/p1,

F'l =Fl /(Mlp2
1 ), P'=P/(rl2p2

1 ), F'0 =F0/(Mlp2
1 ), l'1 = l1l, l'2 = l2l,

v'=v/p1, t'= p1t,

[M=m+ml , p1 =zgl1 tanh (l1h), l1 = p/l, l2 =2p/l]. (5)

Here the parameters in square brackets are dimensional quantities, and ml denotes the mass
of the fluid. In equation (5), ln are roots satisfying the characteristic equation

sin (ll)=0. (6)

The roots correspond to the natural frequencies of asymmetrical and symmetrical sloshing
modes, designated as l2n−1 and l2n , respectively. These are given by

l2n−1 = (2n−1)p/l, l2n =2np/l, n=1, 2, 3, . . . . (7)
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For example, the natural frequency p1, which corresponds to an asymmetrical sloshing
mode of the first order, can be determined by using l1. Equations (1)–(4) are rewritten in
dimensionless form by using equations (5), as follows:

fxx +fyy =0, (8)

ft + 1
2(f

2
x +f2

y )+
y

l1 tanh (l1h)
+P− 1

2ẋ
2
1 + mf=−ẍ1x, (9)

nẍ1 + cẋ1 + kx1 =Fl +F0 cos vt, (10)

Fl = d g
h1

−h

P(1/2, y, t) dy− d g
h2

−h

P(−1/2, y, t) dy. (11)

Here, and in what follows, the primes ' have been omitted. In equations (8) and (9), the
subscripts t, x and y indicate partial derivation with respect to the respective variables.

The boundary conditions for the fluid velocities at the side and bottom walls are as
follows:

fx =0 at x=21/2, fy =0 at y=−h. (12a, b)

The vertical velocity of a fluid particle on the free surface must be the same as the vertical
velocity of the free surface [9]. Therefore the following boundary condition is obtained:

1

1t
h(x, t)=fy −fxhx =y= h . (13)

In addition, since P=0 at the free surface y= h, the boundary condition for equation
(9) can be written

ft + 1
2(f

2
x +f2

y )+
y

l1 tanh (l1h)
− 1

2ẋ
2
1 + mf =y= h =−ẍ1x. (14)

2.2.  

First, the linear system which is governed by equation (8), and by equation (9) where
the terms mf, −1

2ẋ
2
1 , −ẍ1x and 1

2(f
2
x +f2

y ) are excluded, is considered. The free vibrations
of f and h for the linear system can be solved in a series form by using the boundary
conditions, where the non-linear terms are excluded from equations (12)–(14) [14]. Then,
the solutions for the non-linear forced oscillations of f and h are assumed to be given in
terms of the asymmetrical and symmetrical sloshing modes, which are the same as
eigenfunctions obtained in the linear analysis, as follows:

f(x, y, t)= s
a

n=1

[a2n−1(t) sin (l2n−1x) cosh {l2n−1(y+ h)}/cosh (l2n−1h)

+a2n (t) cos (l2nx) cosh {l2n (y+ h)}/cosh (l2nh)], (15a)

h(x, t)= s
a

n=1

{b2n−1(t) sin (l2n−1x)+ b2n (t) cos (l2nx)}. (15b)

Here ai and bi (i=1, 2, 3, . . . ) are unknown functions of time.
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One can expand x on the right side of equation (14) into a series of the same
eigenfunctions as those in equation (15) as follows:

x= s
a

n=1

{S2n−1 sin (l2n−1x)+S2n cos (l2nx)},

S2n−1 = (−1)n+14/{(2n−1)2p2}, S2n =0. (16)

Upon introducing the small parameter e, and denoting the order of e by O(e), the orders
of the quantities are assumed to be as follows [23, 24]:

a1, b1, x1 0O(o1/3), a2, b2, c, m0O(o2/3), a3, b3, F0 0O(o3/3). (17)

In expressions (17), for expedience, the orders of the predominant variables x1, a1 and b1

are assumed to be the same. Also, the orders of a2 and b2 are assumed to be smaller by
O(e1/3) than those of a1 and b1. Furthermore, h is assumed to be small according to the
assumption of equations (17). After expanding equations (13) and (14) in a Taylor series
about h=0, and substituting equations (15) and (16), one equates the coefficients of
sin l1x or cos l2x on both sides of the resulting equations to an accuracy of O(o). In this
way, and also with calculation of the integral for Fl in equation (10), one obtains the modal
equations as follows:

ȧ1 + ma1 +Q1b1 +Q2ẍ1 +Q3b2ȧ1 +Q4b2
1 ȧ1 +Q5b1ȧ2 +Q6a1a2 +Q7a2

1b1 =0, (18a)

ȧ2 +Q8b2 +Q9b1ȧ1 +Q10a2
1 =0, (18b)

b� 1 +Q11a1 +Q12a1b2 +Q13a2b1 +Q14a1b2
1 =0, (18c)

b� 2 +Q15a2 +Q16a1b1 =0, (18d)

Q17ẍ1 + cẋ1 + kx1 +Q18ȧ1 + mQ19a1 +Q20b2ȧ1 +Q21b2
1 ȧ1 +Q22b1ȧ2

+Q23b2ẍ1 +Q24b1ẋ2
1 +Q25a1a2 +Q26b1b2 +Q27a2

1b1 =F0 cos vt. (18e)

Here Qi (i=1, . . . , 27) are as follows:

Q1 =1/(l1 Th1), Q2 =4/p2, Q3 =−l1 Th1/2, Q4 =3l2
1 /8,

Q5 =−l2 Th2/2, Q6 =−l1l2(1+Th1Th2)/2, Q7 = l3
1 Th1,

Q8 =1/(l1 Th1), Q9 =−l1 Th1/2, Q10 =−l2
1 (Th2

1 −1)/4,

Q11 =−l1 Th1, Q12 = l1(l1 − l2)/2, Q13 =−l2(l1 − l2)/2,

Q14 =−l3
1 Th1/8, Q15 =−l2 Th2, Q16 = l2

1 , Q17 = n+ dh,

Q18 =2d Th1/l1, Q19 =2d Th1/l1, Q20 =−2d, Q21 = dl1 Th1,

Q22 =−2d, Q23 =−d, Q24 =−d, Q25 = dl2(Sh1 −Sh31/3)/(Ch1Ch2),

Q26 =−2d/(l1 Th1), Q27 = dl2
1 (Ch21 −1)/(2Ch2

1),

[Th1 = tanh (l1h), Th2 = tanh (l2h), Sh1 = sinh (l1h), Sh31 = sinh (3l1h),

Ch1 =cosh (l1h), Ch2 =cosh (l2h), Ch21 =cosh (2l1h)]. (19)

The equations for a3 and b3 are omitted in equations (18), because they are meaningless
within the accuracy of O(o). Equations (18) are ordinary differential equations for the
unknown functions of time ai and bi (i=1, 2) and xi . Therefore, by integrating this
equation numerically, one can obtained a time history, as shown in Figure 2 of section 3.
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Next, one considers the following equations, in which the damping terms, the excitation
term and non-linear terms are excluded from equations (18), in order to determine the
natural frequencies of the system:

ȧ1 +Q1b1 +Q2ẍ1 =0, b� 1 +Q11a1 =0, Q17ẍ1 + kx1 +Q18ȧ1 =0. (20)

Eliminating a1 from equation (20), and using the relation Q1Q11 =−1 in equation (19),
one obtains

Q2Q11ẍ1 − b� 1 − b1 =0, Q11Q17ẍ1 −Q18b� 1 + kQ11x1 =0. (21)

The solutions for the free vibration equations (21) are assumed in the forms

x1 =A1 cos (qt+ b), b1 =A2 cos (qt+ b). (22)

By substituting equations (22) into equations (21), and setting the determinant of the
coefficient matrix to zero, one obtains the frequency equation. Then, the natural
frequencies q1 and q2 (q1 Q q2) are given by

q2
1 , q2

2 =
1

2(Q2Q18 −Q17)
{−(k+Q17)2z(k+Q17)2 +4k(Q2Q18 −Q17)}. (23)

2.3.      

To investigate the solutions of a harmonic oscillation for the linearized system of
equations (18), the linearized system is expressed by equations (20), where F0 cos vt is
added to the third equation. Thus the solutions of forced oscillations for ai , bi and x1

include explicitly the only the frequency v. However, since equation (18) is non-linear,
substituting the terms of frequency v into equations (18) yields terms of other frequencies.
Accordingly, these terms need to be added into the solutions of forced oscillations in
equation (18). For example, since the existence of the term Q7a2

1b1 in equation (18a) yields
a component of frequency 3v, this component must be added into the solutions for a1, b1

and x1. Similarly, a component of frequency 2v must be included in the solution for a2

due to the term Q10a2
1 in equation (18b). However, an alternative approach can be adopted

here, based on the harmonic balance method. According to the FFT spectrum (see Figure 3
of section 3) from the numerical time history of equations (18), one can assume the
solutions of ai , bi (i=1, 2) and x1 to be of the following forms:

a1 = u1 cos vt− v1 sin vt+w1 cos 3vt− z1 sin 3vt,

b1 = u2 cos vt− v2 sin vt+w2 cos 3vt− z2 sin 3vt,

x1 = u3 cos vt− v3 sin vt+w3 cos 3vt− z3 sin 3vt,

a2 = e1 cos 2vt− f1 sin 2vt, b2 = e2 cos 2vt− f2 sin 2vt+ r0. (24)

Here the amplitudes ui , vi , wi , zi , ej and fj (i=1, 2, 3; j=1, 2), and the constant term r0,
are assumed to be slowly varying functions of time, and their orders of magnitude are in
proportion to those of ai , bi (i=1, 2) and x1. Every time the amplitudes are differentiated
with respect to time, their orders are assumed to decrease by O(o2/3) as follows:

ui , vi 0O(o1/3), wi , zi , ej , fj , r0 0O(o2/3), u̇i , v̇i 0O(o3/3),

ẇi , żi , ėj , f� j , ṙ0, ṙ2 0O(o4/3), üi , v̈i 0O(o5/3), ẅi , z̈i , ëj , f� j , r̈0 0O(o6/3). (25)
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Substituting equations (24) into equations (18), setting the coefficients of the terms of
frequencies v, 2v and 3v and the constant term to zero under the assumptions of
expressions (25), one obtains

u̇1 −2Q2vv̇3 =−mu1 +vv1 −Q1u2 +Q2v
2u3 + g1(uj , vj , ej , fj , r0), (26a)

v̇1 +2Q2vu̇3 =−vu1 − mv1 −Q1v2 +Q2v
2v3 + g2(uj , vj , ej , fj , r0), (26b)

u̇2 =−Q11u1 +vv2 + g3(uj , vj , ej , fj , r0), (26c)

v̇2 =−Q11v1 −vu2 + g4(uj , vj , ej , fj , r0), (26d)

Q18u̇1 −2Q17vv̇3 =−mQ19u1 +Q18vv1 − (k−Q17v
2)u3 + cvv3 +F0 + g5(ui , vi , ej , fj , r0),

(26e)

Q18v̇1 +2Q17vu̇3 =−Q18vu1 − mQ19v1 − cvu3 − (k−Q17v
2)v3 + g6(ui , vi , ej , fj , r0),

(26f)

−3vz1 +Q1w2 −9Q2v
2w3 = g7(uj , vj , ej , fj ), (26g)

3vw1 +Q1z2 −9Q2v
2z3 = g8(uj , vj , ej , fj ), (26h)

Q11w1 −3vz2 = g9(uj , vj , ej , fj ), Q11z1 +3vw2 = g10(uj , vj , ej , fj ), (26i, j)

−3Q18vz1 + (k−9Q17v
2)w3 = g11(ui , vi , ej , fj ), (26k)

3Q18vw1 + (k−9Q17v
2)z3 = g12(ui , vi , ej , fj ), (26l)

e1 = g13(uj , vj , wi , zi ), f1 = g14(uj , vj , wi , zi ), (26m, n)

e2 = g15(uj , vj , wi , zi ), f2 = g16(uj , vj , wi , zi ), r0 = g17(uj , vj ) (26o–q)

where i=1, 2, 3 and j=1, 2. The explicit expressions for equations (26) are shown in
Appendix B. The functions gk (k=1, 2, . . . , 17) on the right sides of equations (26) are
the non-linear terms, which consist of the variables in the brackets. For example, the
symbol ui means that u1, u2 and u3 are involved. The corresponding relationship between
equations (18) and (26) is shown in Table 1. For example, Table 1 implies that equation
(26b) can be derived from the coefficient of sin vt after substituting equation (24) into
equation (18a). From equations (26), with u̇i =0 and v̇i =0, the steady state solutions can
be calculated by a numerical method. The stability analysis can be also performed by
introducing small deviations from the steady state solutions [25].

The procedure for the stability analysis is as follows. First, let the small deviations from
the steady state solutions for (ui , vi , wi , zi ) (i=1, 2, 3), (ej , fj ) (j=1, 2) and r0 be
(ji , hi , gi , di ), (rj , sj ) and z, respectively. One has the matrix forms

X=(r1 s1 r2 s2 z)T, Y=(g1 d1 g2 d2 g3 d3)T,

Z=(j1 h1 j2 h2 j3 h3)T, (27)

T 1

Corresponding relationships between equations (18) and (26)

Equations cos vt sin vt cos 3vt sin 3vt cos 2vt sin 2vt Constant

(18) a c e a c e a c e a c e b d b d b
(26) a c e b d f g i k h j l m, n, o, p q
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where X, Y and Z are the column vectors, and the superscript T denotes the transpose of
the matrix in question. After giving these small deviations in the vicinity of the steady state
solutions for equations (26), one expands the resulting equations in Taylor series about
the steady state solutions. Then, one neglects all terms containing the second and higher
powers of these small deviations. Using the equations for the steady state solutions in
equations (26), one obtains

Z� =AZ+BX, X=CZ+DY, Y=EZ+FX, (28)

where A, B, etc., are matrices which can be determined from the coefficients of equations
(26). By eliminating X and Y in equations (28), one obtains

Z� =GZ, (29)

where

G=A+B(I−DF)−1(C+DE), (30)

and I is the unit matrix. Therefore, the stability analysis of the steady state solutions is
related to the eigenvalue problem for the differential equation (29): namely, the steady state
solution is stable when the real part of the eigenvalue for the matrix G is equal to or less
than zero, and it is unstable when the real part is positive.

Figure 2. Steady state time histories when n=0·94, k=1·0, c=0·013, m=0·024, h=0·6, d=0·1,
F0 =0·0015, x=0·15 and v=1·06.
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Figure 3. FFT spectra for the waveforms of Figure 2.

Now, one considers the system in which the water is assumed to be unmovable and the
water mass is added to the structure mass. The equation of motion for this system is
obtained by setting ai and bi (i=1, 2) in equation (18e) to zero, as follows:

Q17ẍ1 + cẋ1 + kx1 =F0 cos vt. (31)

The resonance curve for equation (31) is given by

R=F0/z(k−Q17v
2)2 + c2v2, (32)

where R is an amplitude of the main system, and Q17 is given in equations (19).

3. NUMERICAL RESULTS

For the results to be presented, the values of the parameters were selected under a tuned
condition such that the natural frequency of the main system is equal to the natural
frequency p1 corresponding to the first asymmetrical sloshing mode. Therefore, the relation
zk/Q17 = p1 =1 holds in a dimensionless form.

In Figure 2 is shown the steady state time history obtained by the digital simulation of
equations (18). The values of the parameters are n=0·94, k=1·0, c=0·013, m=0·024,
h=0·6, d=0·1, F0 =0·0015, x=0·15 and v=1·06. The system resonates at this value
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Figure 4. Theoretical resonance curves in the same case as for Figure 2 (i.e., for h=0·06). (a) The amplitude
of the v component in x1; (b) the amplitude of the v component in b1; (c) the amplitude of the 2v component
in b2; (d) the amplitude −r0 of the constant component in b2. ——, Stable; – – –, unstable; W, simulation; TSD,
Tuned Sloshing Damper.

of v, and thus the amplitudes of the response become large (see Figure 4). In the
simulation, the initial values at t=0 are selected as x1 =0·01, with the other values equal
to zero. The time history of h is obtained by substituting the data for b1 and b2 into
equations (15).

In Figure 3 are shown the FFT spectra from the time histories in Figure 2. For example,
it can be seen from Figure 3 that there are dominant peaks of frequencies v and 3v in
b1, 2v and the constant component (which should be noticed to be negative) in b2, and
v in x1. These results validate the assumption of the solution forms given in equations (24).

Figure 5. As Figure 4, but for h=0·33. (a) The amplitude of the v component in x1; (b) the amplitude of
the v component in b1. ——, Stable; – – –, unstable; W, simulation; TSD, Tuned Sloshing Damper.
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Figure 6. As Figure 4, but for h=0·2 and d=0·2. (a) The amplitude of the v component in x1; (b) the
amplitude of the v component in b1. ——, Stable; – – –, unstable; W, simulation; TSD, Tuned Sloshing Damper.

It is also indicated in Figure 3 that the maximum amplitude of b2 is slightly larger than
that of x1. This seems inconsistent with assumptions (17). However, it is evident that the
approximate solutions based on expressions (17) have a higher accuracy than those in the
case assumed, as x1 =O(o2/3).

In Figure 4 are shown the resonance curves for the component of v (i.e., zu2
3 + v2

3 ) in
x1, the component of v (i.e., zu2

2 + v2
2 ) in b1, the component of 2v (i.e., ze2

2 + f 2
2 ) in b2,

and the constant component −r0, which can be calculated from equations (26). The solid
and broken lines represent the stable and unstable steady state solutions, respectively. The
chain line denotes the resonance curve for the main system according to equation (32):
that is, the resonance curve without a TSD (Tuned Sloshing Damper). The values of the
parameter are the same as those for Figure 2. The shape of resonance curves is a soft spring
type. The symbol ‘‘W’’ denotes the amplitude of the component of each frequency obtained
by the FFT analysis of the time histories. Therefore, the theoretical resonance curve agree
well with the results from the digital simulation. Also it is found that the peak for the main

Figure 7. The theoretical resonance curve for x1 obtained by digital simulation when the value of F0 for
Figure 4 is changed to 0·005. w, Simulation.
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Figure 8. Steady state time histories of x1 and h at v=0·985 in Figure 7.

system near v2 1 vanishes by using a TSD, and that a TSD has the similar effect of
vibration control to a dynamic absorber.

In Figures 5 and 6 are shown the resonance curves for water depths different from that
in Figure 4. For Figure 5, h=0·33. For Figure 6, h=0·2 and d=0·2. The other
parameters have the same values as those for Figure 4. Good agreement is shown in these
figures between the theoretical curves and the simulation results. It is found from these
figures that the resonance curves change from soft spring types to hard spring types as
the water depth decreases.

In Figure 7 is shown the resonance curve of x1 given by digital simulations in the case
in which only the magnitude of the excitation is changed, from F0 =0·0015 for Figure 4
to F0 =0·005. The symbol ‘‘w’’ denotes the maximum amplitude obtained from the time
history. The peak can be seen to be near v=1·0, which indicates the tuning frequency
between the structure and the sloshing. In utilizing the water tank as the vibration absorber
for a practical structure, this peak may becomes an obstacle.

In Figure 8 are shown the steady state time histories of x1 and h at v=0·985 for
Figure 7, and the FFT spectrum for x1 for Figure 8 is shown in Figure 9. In this case,
the natural frequencies of the system are q1 =0·930 and q2 =1·089 which can be calculated
from equations (23). These two frequencies, except for v (=0·985) in Figure 9, are denoted
by v1 (=0·917 and v2 (=1·053). These frequencies are close to the natural frequencies,
and the relation

v1 +v2 =2v (33)

holds. Therefore, the oscillation in Figure 8 is a super-summed-and-differential harmonic
oscillation [26], which is a kind of non-linear forced oscillation.

Figure 9. The FFT spectrum for x1 in Figure 8.
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Figure 10. The experimental apparatus.

4. EXPERIMENTAL APPARATUS AND RESULTS

A schematic diagram of the experimental apparatus is shown in Figure 10. The mass
m with the rectangular tank made of acrylic plastics was mounted at the end of the
cantilever (the width and thickness of which were 50·0 mm and 3·1 mm, respectively). The
mass m was sinusoidally excited through a thin aluminium plate by an electromagnetic
exciter. The displacement x1 of the mass m (i.e., the structure) and the elevation h of the
water surface at the position of x=15 mm were measured by the laser sensors S1 and S2.
In the experiments, as shown in Table 2, three kinds of apparatus were used with mainly
different water depths, and were called apparatuses A, B and C. In Table 2, the equivalent
mass of the cantilever is included in the value of m, and the equivalent stiffness of the
aluminium plate is contained in the value of k. The value of m was measured from the
waveforms of the free vibrations for the water surface. The value of m for apparatus C
was taken as the same value as that for apparatus B, becuase it could not be measured
due to the disturbance of the water surface. The magnitude of excitation F0 was calculated
from the spring constant of the aluminium plate and the stroke of the exciter head when
the mass m was fixed. In experiments, a water solution with white watercolors of
0·28% was used in order that the light of the laser could be reflected on the liquid surface.
Each apparatus was constructed so that the natural frequency of the main system

T 2

The dimensions of apparatuses A, B and C

A B C

Structure mass, m (kg) 6·080 6·470 6·797
Spring constant, k (N/m) 1890 1513 921
Damping coefficient, c (Ns/m) 1·109 0·761 0·630
Tank length, l (m) 0·10 0·10 0·12
Tank width, d (m) 0·06 0·06 0·085
Water depth, h (m) 0·06 0·03 0·02
Water mass, ml (kg) 0·367 0·183 0·205
Viscosity, m (1/s) 0·40 0·60 —†
Force, F0 (N) 0·205 0·139 0·152
Natural frequency, p0 (Hz) 2·725 2·400 1·825

† The corresponding value could not be measured.
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Figure 11. A comparison of the theoretical and experimental resonance curves for apparatus A when
h=60 mm. (a) Amplitudes of x1; (b) amplitudes of h. ——, Stable solution of theoretical resonance curve; – – –,
unstable solution of theoretical curve; w, experiment for the case with TSD; W, experiment for the case without
TSD; Y, jump phenomena.

p0 = (1/2p)zk/M Hz (where M=m+ml ) was equal to the natural frequency p1

corresponding to the asymmetrical first mode of sloshing.
In Figures 11(a) and 11(b) are shown the resonance curves for the structure and the

water surface for apparatus A, respectively. The abscissa of these figures is the excitation
frequency f Hz. The solid and broken lines are the theoretical resonance curves for the
system with a TSD, and the chain line is that for the system without a TSD (from equation
(32)). These curves are of the same kinds as those in Figure 4. The symbol ‘‘w’’ denotes
the maximum amplitude of the experimental waveform of x1 and h for the system with
a TSD, and the symbol ‘‘W’’ denotes the maximum amplitude of x1 for the system without
a TSD. The arrows denote the jump phenomena in the amplitude. The peak for the

Figure 12. A comparison of the theoretical and experimental resonance curves for x1 for apparatus B when
h=30 mm. ——, Stable solution of theoretical resonance curve; – – –, unstable solution of theoretical curve; w,
experiment for the case with TSD; W, experiment for the case without TSD.
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Figure 13. A comparison of the theoretical and experimental resonance curves for x1 for apparatus C when
h=20 mm. ——, Stable solution of theoretical resonance curve; –––, unstable solution of theoretical curve; w,
experiment for the case with TSD; W, experiment for the case without TSD; Y, jump phenomena.

structure plotted by ‘‘W’’ near f2 p0 was about 18 mm. The shape of this resonance curve
is of a soft spring type. It is shown in Figure 11 that the theoretical curves agree well with
the experimental results.

In Figures 12 and 13 are shown the resonance curves for the structure for apparatuses
B and C, respectively. The peaks of the structure without a TSD near f2 p0 were about
21 mm for apparatus B, and about 30 mm for apparatus C. The shape of the resonance
curve for apparatus C is of a hard spring type. Also obtained were the experimental
resonance curves shown in Figures 11–13, which are similar to the theoretical ones in
Figures 4–6, respectively. Accordingly, also in the experiments, the resonance curve
changed from a soft spring type to a hard spring type as the water depth decreased.

Figure 14. The experimental resonance curves for x1 for apparatus A when F0 =0·64 N. (a) Amplitudes of
x1; (b) amplitudes of h. —w—, Harmonics; —u—, super-summed-and-differential harmonic oscillations; Y,
jump phenomena.
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In Figure 14 is shown the experimental resonance curve for the structure for an
apparatus similar to apparatus A when the magnitude of excitation (F0 =0·64 N) was
larger than that for Figure 11. In Figure 14, there is a peak denoted by the symbol ‘‘u’’
near the tuning frequency (f2 2·7 Hz). In this case, the natural frequencies of this
apparatus were f1 (=2·48 Hz) and f2 (=2·93 Hz). Considering that the two frequencies of
this peak measured were close to f1 and f2, and that the relation f1 + f2 2 2f holds, one
can see that this peak corresponds to the super-summed-and-differential harmonic
oscillations. These experimental results mentioned above agreed well with the theoretical
predictions.

5. CONCLUSIONS

The non-linear harmonic responses of the structure and the water surface in the
rectangular tank have been theoretically and experimentally considered. The results can
be summarized as follows.

(1) The modal equations, which are needed to analyze the non-linear coupled vibration
of the structure with the sloshing, can be obtained.

(2) Depending on the water depth, the shapes of the resonance curves for the structure
become soft spring types for a deep depth, and hard spring types for a shallow depth.

(3) When the magnitude of excitation is small, the amplitude of the structure becomes
infinitesimal near the tuning frequency.

(4) If the magnitude of excitation is comparatively large, a super-summed-and-differen-
tial harmonic oscillation may occur near the tuning frequency.

(5) The validity of the theoretical analysis was confirmed by the experiments.
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APPENDIX A

According to reference [19], the longitudinal deflection d of the cantilever beam yields
the following non-linear terms in the equation of motion (3), written in a dimensionless
form,

(36ml /25L2)x1(x1ẍ1 + ẋ2
1 ) [0A], (A1)

where L is the length of the cantilever, and ml is the mass of liquid. By using the
dimensionless quantities defined by equations (5), this term can be rewritten in
dimensionless form as

36
25d'h'(l/L)2x'1 (x'1 ẍ'1 + ẋ'21 ) [0A']. (A2)

It seems that this term should be added in equation (10). However, since the width
of the tank was l=100 mm and the length of the cantilever L was equal to 350 mm
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in the experimental apparatus, the relation l/LQ 1 held. Here, as one assumes
x1 =O(e1/3),

A'QO(e3/3)=O(e) (A3)

holds. Therefore, the term A or A' can be neglected by considering that equation (18e)
is derived to an accuracy of O(e).

APPENDIX B

The complete expressions for equations (26) are as follows:

u̇1 −2Q2vv̇3 =−mu1 +vv1 −Q1u2 +Q2v
2u3

+ 1
4Q4v{v1(3u2

2 + v2
2 )−2u1u2v2}− 1

4Q7{u2(3u2
1 + v2

1)+2u1v1v2}

−(Q5vv2 + 1
2Q6u1)e1 + (Q5vu2 − 1

2Q6v1)f1

+ 1
2Q3v(v1e2 − u1f2)+Q3vv1r0, (B1)

v̇1 −2Q2vu̇3 =−vu1 − mv1 −Q1v2 +Q2v
2v3

+ 1
4Q4v{u1(u2

2 +3v2
2 )−2u2v1v2}− 1

4Q7{v2(u2
1 +3v2

1)+2u1u2v1}

−(Q5vu2 − 1
2Q6v1)e1 − (Q5vv2 + 1

2Q6u1)f1

+ 1
2Q3v(u1e2 + v1f2)−Q3vu1r0, (B2)

u̇2 =−Q11u1 +vv2 − 1
4Q14{u1(3u2

2 + v2
2 )+2u2v1v2}

− 1
2Q13(u2e1 + v2f1)− 1

2Q12(u1e2 + v1f2)−Q12u1r0, (B3)

v̇2 =−Q11v1 −vu2 − 1
4Q14{v1(u2

2 +3v2
2 )+2u1u2v2}

+ 1
2Q13(v2e1 − u2f1)+ 1

2Q12(v1e2 − u1f2)−Q12v1r0, (B4)

Q18u̇1 −2Q17vv̇3 =−mQ19u1 +Q18vv1 − (k−Q17v
2)u3 + cvv3

+ 1
4Q21v{v1(3u2

2 + v2
2 )−2u1u2v2}− 1

4Q24v
2{u2(u2

3 +3v2
3 )−2u3v2v3}

− 1
4Q27{u2(3u2

1 + v2
1 )+2u1v1v2}−(Q22vv2 + 1

2Q25u1)e1

+ (Q22vu2 − 1
2Q25v1)f1 + 1

2(Q20vv1 +Q23v
2u3 −Q26u2)e2

− 1
2(Q20vu1 −Q23v

2v3 +Q26v2)f2

+ (Q20vv1 +Q23v
2u3 −Q26u2)r0 +F0, (B5)

Q18v̇1 +2Q17vu̇3 =−Q18vu1 − mQ19v1 − cvu3 − (k−Q17v
2)v3

− 1
4Q21v{u1{u2

2 +3v2
2 )−2u2v1v2}− 1

4Q24v
2{v2(3u2

3 + v2
3 )−2u2u3v3}

− 1
4Q27{v2(u2

1 +3v2
1 )+2u1u2v1}−(Q22vu2 − 1

2Q25v1)e1

− (Q22vv2 + 1
2Q25u1)f1 + 1

2(Q20vu1 −Q23v
2v3 +Q26v2)e2

+ 1
2(Q20vv1 +Q23v

2u3 −Q26u2)f2 − (Q20vu1 −Q23v
2v3

+Q26v2)r0, (B6)
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−3vz1 +Q1w2 −9Q2v
2w3 = 1

4Q4v{v1(u2
2 − v2

2 )+2u1u2v2}− 1
4Q7{u2(u2

1 − v2
1 )

−2u1v1v2}+(Q5vv2 − 1
2Q6u1)e1 + (Q5vu2 + 1

2Q6v1)f1

+Q3v(u1f2 + v1e2), (B7)

3vw1 +Q1z2 −9Q2v
2z3 =−1

4Q4v{u1(u2
2 − v2

2 )−2u2v1v2}− 1
4Q7{v2(u2

1 − v2
1 )

+2u1u2v1}−(Q5vu2 + 1
2Q6v1)e1

+ (Q5vv2 − 1
2Q6u1)f1 − 1

2Q3v(u1e2 − v1f2), (B8)

Q11w1 −3vz2 =−1
4Q14{u1(u2

2 − v2
2 )−2u2v1v2}− 1

2Q13(u2e1 − v2f1)− 1
2Q12(u1e2 − v1f2),

(B9)

Q11z1 +3vw2 =−1
4Q14{v1(u2

2 − v2
2 )+2u1u2v2}− 1

2Q13(v2e1 + u2f1)− 1
2Q12(v1e2 + u1f2),

(B10)

−3Q18vz1 + (k−9Q17v
2)w3 = 1

4Q21v{v1(u2
2 − v2

2 )+2u1u2v2}+ 1
4Q24v

2{u2(u2
3 − v2

3 )

−2u3v2v3}− 1
4Q27{u2(u2

1 − v2
1 )−2u1v1v2}

+(Q22vv2 − 1
2Q25u1)e1

+ (Q22vu2 + 1
2Q25v1)f1 + 1

2(Q20vv1 +Q23v
2u3 −Q26u2)e2

+ 1
2(Q20vu1 −Q23v

2v3 +Q26v2)f2, (B11)

3Q18vw1 + (k−9Q17v
2)z3 =−1

4Q21v{u1(u2
2 − v2

2 )−2u2v1v2}+ 1
4Q24v

2{v2(u2
3 − v2

3 )

+2u2u3v3}− 1
4Q27{v2(u2

1 − v2
1 )+2u1u2v1}

−(Q22vu2 + 1
2Q25v1)e1 + (Q22vv2 − 1

2Q25u1)f1

− 1
2(Q20vu1 −Q23v

2v3 +Q26v2)e2

+ 1
2(Q20vv1 +Q23v

2u3 −Q26u2)f2, (B12)

e1 =−{Q9v
2(u1u2 − u1w2 +3u2w1 − v1v2 − v1z2 +3v2z1)

+2Q10 − v(u1v1 + u1z1 − v1w1)

+ 1
2Q8Q16(u1u2 + u1w2 + u2w1 − v1v2 + v1z2 + v2z1)}/(4v2 +Q8Q15), (B13)

f1 =−{Q9v
2(u1v2 − u1z2 + u2v1 +3u2z1 + v1w2 −3v2w1)

−Q10v(u2
1 − v2

1 +2u1w1 +2v1z1)

+ 1
2Q8Q16(u1v2 + u1z2 + u2v1 + u2z1 − v1w2 − v2w1)}/(4v2 +Q8Q15), (B14)

e2 = {1
2Q9Q15v(u1v2 − u1z2 + u2v1 +3u2z1 + v1w2 −3v2w1)

− 1
2Q10Q15(u2

1 − v2
1 +2u1w1 +2v1z1)

−Q16v(u1v2 + u1z2 + u2v1 + u2z1 − v1w2 − v2w1)}/(4v2 +Q8Q15), (B15)

f2 = − {1
2Q9Q15v(u1u2 − u1w2 +3u2w1 − v1v2 − v1z2 +3v2z1)

+Q10Q15(u1v1 + u1z1 − v1w1)

−Q16v(u1u2 + u1w2 + u2w1 − v1v2 + v1z2 + v2z1)}/(4v2 +Q8Q15), (B16)

r0 =−{Q9v(u1v2 − u2v1)+Q10(u2
1 + v2

1 )}/(2Q8). (B17)


